SHP2-interacting Transmembrane Adaptor Protein (SIT), A Novel Disulfide-linked Dimer Regulating Human T Cell Activation
نویسندگان
چکیده
T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain-containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a disulfide-linked homodimeric glycoprotein that is expressed in lymphocytes. After tyrosine phosphorylation by src and possibly syk protein tyrosine kinases SIT recruits the SH2 domain-containing tyrosine phosphatase SHP2 via an immunoreceptor tyrosine-based inhibition motif. Overexpression of SIT in Jurkat cells downmodulates T cell receptor- and phytohemagglutinin-mediated activation of the nuclear factor of activated T cells (NF-AT) by interfering with signaling processes that are probably located upstream of activation of phospholipase C. However, binding of SHP2 to SIT is not required for inhibition of NF-AT induction, suggesting that SIT not only regulates NF-AT activity but also controls NF-AT unrelated pathways of T cell activation involving SHP2.
منابع مشابه
T Cell Receptor (TCR) Interacting Molecule (TRIM), A Novel Disulfide-linked Dimer Associated with the TCR–CD3–ζ Complex, Recruits Intracellular Signaling Proteins to the Plasma Membrane
The molecular mechanisms regulating recruitment of intracellular signaling proteins like growth factor receptor-bound protein 2 (Grb2), phospholipase Cgamma1, or phosphatidylinositol 3-kinase (PI3-kinase) to the plasma membrane after stimulation of the T cell receptor (TCR)- CD3-zeta complex are not very well understood. We describe here purification, tandem mass spectrometry sequencing, molecu...
متن کاملSIT and TRIM determine T cell fate in the thymus.
Thymic selection is a tightly regulated developmental process essential for establishing central tolerance. The intensity of TCR-mediated signaling is a key factor for determining cell fate in the thymus. It is widely accepted that low-intensity signals result in positive selection, whereas high-intensity signals induce negative selection. Transmembrane adaptor proteins have been demonstrated t...
متن کاملLIME, a Novel Transmembrane Adaptor Protein, Associates with p56lck and Mediates T Cell Activation
In this study, we identify and characterize a novel transmembrane adaptor protein, designated Lck-interacting membrane protein (LIME), as a binding partner of the Lck Src homology (SH)2 domain. LIME possesses a short extracellular domain, a transmembrane domain, and a cytoplasmic tail containing five tyrosine-based motifs. The protein is primarily expressed in hematopoietic cells and lung. Inte...
متن کاملThe Transmembrane Adaptor Protein SIT Inhibits TCR-Mediated Signaling
Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulatio...
متن کاملThe N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms
The T cell receptor (TCR) triggers the assembly of "SLP-76 microclusters," which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase-associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 189 شماره
صفحات -
تاریخ انتشار 1999